Ha	правах	рукописи
		1 2

Егоров Станислав Геннадьевич

Исследование помехоустойчивых широкополосных сетей радиосвязи системы управления движением судов

2.2.13. Радиотехника, в том числе системы и устройства телевидения

Автореферат диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича» на кафедре радиотехники.

Научный руководитель: доктор технических наук, профессор

Глушанков Евгений Иванович

Официальные оппоненты: Путилин Алексей Николаевич,

доктор технических наук, профессор,

Публичное акционерное общество «Информационные

телекоммуникационные технологии»

(ПАО «Интелтех»), главный научный сотрудник

Рашич Андрей Валерьевич,

кандидат технических наук, доцент,

Санкт-Петербургский политехнический университет

Петра Великого,

Высшая школа прикладной физики и космических

технологий института электроники и

телекоммуникаций, доцент

Ведущая организация: Акционерное общество «Научно-производственное

объединение Завод «Волна» (АО «НПО «Волна»),

г. Санкт-Петербург

Защита состоится 17 декабря 2025 года в 16.00 на заседании диссертационного совета 55.2.004.01, созданного на базе Федерального государственного бюджетного образовательного учреждения высшего образования «Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича», по адресу: Санкт-Петербург, пр. Большевиков, д. 22, корп. 1, ауд. 554/1

С диссертацией можно ознакомиться в библиотеке СПбГУТ по адресу Санкт-Петербург, пр. Большевиков, д. 22, корп. 1 и на сайте www.sut.ru.

Автореферат разослан 16 октября 2025 года.

Ученый секретарь диссертационного совета 55.2.004.01, канд. техн. наук, доцент

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. В настоящее время оперативный контроль за движением судов в акватории морских портов осуществляется специализированными системами управления движением судов (СУДС), которые с ростом автоматизации находят всё более широкое применение. Так, недавно были проведены испытания полностью автоматических портовых СУДС (СУДС-П) в Новороссийске и Владивостоке, а в ближайшее время планируются испытания и в порту Санкт-Петербурга. В «Кодекс торгового мореплавания Российской Федерации» в 2024 году были внесены термины автономное судно, внешний экипаж. Таким образом, происходит активное техническое и правовое внедрение автономных систем типа СУДС-П.

В современных СУДС применяют множество видов связи: радиосвязь в различных диапазонах (СВ, ПВ, КВ, УКВ), беспроводные сети (LTE, Wi-Fi), спутниковые системы (Иридиум, Инмарсат, VSAT) и гибридные сети. Используемые технологии связи различаются по дальности, скорости и решаемым задачам: от локальной навигации и автоматической идентификационной системы (АИС, AIS) до глобального интернета (VSAT, Иридиум, Starlink). Технологии подбираются по задачам: спутники — для открытого моря, радиодоступ — для навигационных задач, гибридные системы — для портовых зон. Использование такой широкой номенклатуры средств связи и радионавигации усложняет радиообстановку и требует детального проектирования сетей радиосвязи.

В связи с изложенным, СУДС – это сложный радиокомплекс, включающий в себя несколько подсистем. Основные элементы СУДС включают в себя: МОСС (морская отказоустойчивая связь); САС (система автономного судовождения); АНС (автономная навигационная система); ПДУ (пост дистанционного управления). Одна из ключевых задач – предоставление многостанционного доступа к общему ресурсу управления. Объектом интереса являются АНС и МОСС.

Навигационные функции такой системы невозможно реализовать исключительно за счёт глобальных систем навигации (ГЛОНАСС, GPS), вопервых, из-за их недостаточной точности при наличии организованных помех, вовторых, спутниковая связь не всегда возможна, особенно в критических ситуациях и при работе в северных широтах типа Мурманска, Архангельска и т. д., где характерно низкое качество спутниковой связи, а в-третьих, в критических ситуациях, она может быть отключена или находиться в состоянии неготовности, и возникает необходимость использования автономных систем связи и навигации.

Согласно положению по классификации Российского морского регистра судоходства системы определения местоположения судна должны обеспечивать с вероятностью 95% абсолютную точность определения местоположения при: навигации в открытом море 100 м; при выполнении маневра на подходах к портам и прибрежных водах 10 м; при маневрировании в порту 1 м; при автоматической швартовке 0,1 м. Это требует применения высокоточных систем АНС с высокой точностью измерения дистанции до произвольного точечного объекта (порядка 0,5 м); высокой разрешающей способностью по дальности (1–2 м, то есть примерно в 10 раз выше современных РЛС); с малой слепой зоной (1–5 м).

Обеспечить надежность организации автоматической проводки и швартовки судов, а также повышения точности навигации возможно путем применения

многопозиционных АНС и вспомогательных автоматических судовбуксировщиков. Зачастую при работе в порту требуется управление не одним судном, а группой судов одновременно, т. е. возникает необходимость использования помехоустойчивых систем связи со множественным доступом.

Сеть связи СУДС-П представляет собой систему обмена данными между элементами СУДС на борту судна (судовой комплект связи) и на берегу (береговой комплект связи) как по основному, так и по резервному каналам для обеспечения наибольшей надежности. Следовательно, возникает и необходимость в разработке сетей связи с множественным доступом и объединении их в единую интегрированную автономную навигационно-связную радиосистему.

Во всех современных СУДС используются широкополосные (шумоподобные) сигналы (ШПС), множественный доступ и кодовое разделение каналов (МДКР). МДКР применяется для связи с морскими надводными и подводными аппаратами, для организации многоканальной связи с БЭК (т. н. «рой дронов»), в многопозиционных системах автономной навигации (для связи между приемопередающими пунктами сети, стандарт ГОСТ/ИСО 2430-5 системы позиционирования в реальном времени). Характерной особенностью сигналов с МДКР является высокий пик-фактор, что приводит к повышению требований к линейности радиотракта. Достоинством применения ШПС сигналов связи, обладающих хорошими корреляционными свойствами, является то, что они могут быть непосредственно использованы для измерения например, методом симметричного двухстороннего дальности, двунаправленного измерения расстояния (SDS-TWR). Обычно на связные системы также наложена и функция измерения расстояний между абонентами. Для этого необходимы сигналы, имеющие хорошие корреляционные свойства, а протоколы должны быть совместимы со стандартами SO 24730-5 и IEEE 802.15.4-2011 и др. Для ШПС сигналов обычно используют пилот-канал (выделяют один из канальных переносчиков) в котором передают специальную кодовую последовательность псевдослучайную последовательность максимальной организации сеанса связи, что обеспечивает распределение и контроль мощностей абонентов, и передачу абонентов между пунктами управления.

Таким образом, у гражданских потребителей возникает потребность в получении стабильно точного навигационного решения в условиях порта, а у военных потребителей остро стоит потребность в обеспечении противодействия технической разведке и в помехоустойчивых связной и навигационной системах, продолжающих работать при действии большого числа источников помех, либо обладающих меньшими габаритами.

С учетом вышеизложенного при проектировании СУДС и реализации ее услуг становится актуальной задача разработки методики оценки реальной помехоустойчивости сетей радиосвязи с кодовым разделением каналов, учитывающей комплексное воздействие множества мешающих факторов. Это в итоге позволит обеспечить стабильное и точное решение навигационных задач, повысить надежность автономного управления движением судов и помехоустойчивость системы в целом.

Степень разработанности темы исследования. Качество передачи информации при использовании алгоритма МДКР существенно зависит от уровня внутрисистемных помех, порождаемых межканальными и внутриканальными влияниями, возникающими при искажениях видеоимпульсных сигналов. При этом внимание исследователей в основном привлекают межканальные, линейные, искажения, вызванные неравномерностью частотных характеристик групповых трактов в системе

передачи. Однако не меньшее влияние на качество передачи оказывают и внутриканальные, нелинейные, искажения, вызванные нелинейностью амплитудных характеристик канальных — индивидуальных трактов. Поэтому основной предмет исследования в данной работе — помехи, возникающие из-за неидеальности амплитудных характеристик оборудования. В имеющихся работах использование гауссовской аппроксимации в качестве модели группового сигнала и существенно упрощенной модели амплитудной характеристики усилителя в ряде случаев может привести к неточной оценке помехоустойчивости системы.

Сетям связи и передачи данных с МДКР посвящены работы таких отечественных и зарубежных авторов, как В.Ю. Бабков, Э.Д. Витерби, В.А. Григорьев, В.П. Ипатов, Л.М. Невдяев, М.А. Сиверс. В работах Н.Г. Дядюнова, Г.И. Никитина, А.И. Сенина, Х.Ф. Хармута освещается применение в таких системах функций Радемахера-Уолша.

Большой вклад в развитие теории и техники измерения параметров сигналов, требуемых для повышения помехоустойчивости сетей радиосвязи в составе СУДС, базирующихся на фундаментальных положениях теории оптимального приема и потенциальной помехоустойчивости, внесли зарубежные, советские и российские ученые (Н. Винер, В.П. Ипатов, М.Ю. Казаринов, Р. Калман, А.Н. Колмогоров, В.И. Коржик, В.А. Котельников, Б.Р. Левин, Р.Л. Стратонович, В.И. Тихонов, Л.М. Финк, А.А. Харкевич, К. Шеннон и др.).

Разработке навигационных сигналов и алгоритмов их обработки посвящены работы отечественных (А.И. Перов, Г.А. Фокин, В.Н. Харисов, М.С. Ярлыков) и зарубежных (Д. Бетц, К. Хегарти, Т. Фана, Д. Яо и др.) ученых.

Переход к автономному судовождению невозможен без модернизации сетей радиосвязи. Наиболее перспективной технологией, обеспечивающей необходимые характеристики (высокая скорость передачи, устойчивость многолучевости, низкие помехи другим средствам связи благодаря использованию сигналов малой мощности), являются широкополосные системы связи (ШПСС), уже применяемые в отечественных и зарубежных проектах модернизации СУДС. Создание нового поколения помехоустойчивых широкополосных радиосетей, интегрированных в навигационные и управляющие подсистемы СУДС, должно обеспечить повышение безопасности судовождения, снизить время проводки и швартовки судов и создать дальнейший задел для перехода к следующему поколению надводных средств, включая роботизированные полностью автономные суда. Внедрение автоматизированных СУДС позволит оптимизировать пропускную способность портов, снизить риск возникновения аварийных ситуаций и повысить оперативность диспетчерских решений.

Теоретическая оценка реальной помехоустойчивости групповых трактов сетей радиосвязи СУДС представляет собой сложную задачу, решенную до настоящего времени лишь для некоторых частных случаев. Решение задачи оценки реальной помехоустойчивости и ее повышения, позволит обоснованно подойти к проектированию аппаратуры цифровых сетей связи СУДС.

Целью работы является повышение помехоустойчивости сетей радиосвязи в системах управления движением судов за счет более точного совместного оценивания параметров нелинейности канала связи при приемлемой вычислительной сложности.

Объектом исследования является система автономного судовождения (САС), включающая морскую отказоустойчивую систему связи (МОСС) на базе синхронных сетей радиосвязи с кодовым разделением каналов (МДКР) и прямым расширением спектра, а также автономную навигационную систему (АНС).

Предметом исследования являются: методы анализа нелинейных искажений в групповых трактах; модели помехоустойчивых систем радиосвязи с кодовым разделением каналов; алгоритмы определения местоположения морских объектов.

Основная научная задача. Разработка методики оценки реальной помехоустойчивости сетей радиосвязи с кодовым разделением каналов с учетом влияния комплекса факторов, а также повышение качества автономного управления движением объектов для систем управления движением судов.

Для достижения указанной цели были сформулированы и решены **частные задачи**:

- 1. Исследование влияния нелинейных искажений на реальную помехоустойчивость систем радиодоступа МДКР.
- 2. Анализ моделей нелинейных групповых усилителей и их характеристик; определение наиболее значимых факторов, влияющих на качество передачи информации в системах МДКР.
- 3. Экспериментальное исследование и компьютерное моделирование искажений сигналов в групповых трактах систем МДКР.
- 4. Разработка практических рекомендаций и требований, предъявляемых к аппаратуре групповых трактов систем МДКР.
- 5. Анализ точности определения местоположения судов с помощью сигналов связи систем МДКР.

Научная новизна. Получены аналитические зависимости вероятности битовой и чиповой ошибки в сетях радиосвязи от характеристик цифрового тракта, учитывающие нелинейные искажения и свойства группового сигнала. При этом:

- 1. Предложен единый критерий количественной оценки вероятности ошибок в системах с цифровой модуляцией, основанный на понятии массы искажений.
- 2. Показано, что нелинейные искажения в групповом тракте значительно уменьшают реальную помехоустойчивость сетей связи с МДКР.
- 3. Предложены рекомендации и сформулированы требования к групповым трактам сетей связи с МДКР.

Теоретическая и практическая значимость. Теоретическая значимость выполненного исследования заключается в том, что:

- а) Выполнена разработка математических моделей групповых сигналов и трактов в СУДС с использованием негауссовских моделей групповых сигналов и синтезированы стохастические дифференциальные уравнения для их описания, что позволило снизить вычислительную сложность имитационного моделирования таких сигналов.
- б) Предложены новые формулы на основе алгоритма Ньютона-Гаусса для аппроксимации параметров нелинейного группового тракта и разработана методика оценки помехоустойчивости систем МДКР с учетом нелинейности группового тракта.
- в) Установлены новые, ранее не отмеченные в литературе статистические (комбинационные) свойства группового сигнала, на основе которых предложен новый способ оценки межканальных помех и предложен способ компенсации нелинейных искажений на приемной стороне. На их основе предложен метод компенсации нелинейности.
- г) Предложен комплекс моделей, который позволяет исследовать групповой тракт системы передачи информации (МІМО НОМД-ПРС-МДКР) с

- пространственно-временным кодированием, учитывающий нелинейность амплитудной характеристики тракта при использовании ортогональных и неортогональных методов доступа.
- д) Разработан комплекс алгоритмов для систем автономного управления движением судов для вычисления на ограниченных расстояниях параметров движения объекта при кооперативной обработке измерений с различным видом корреляционной матрицы ошибок и вариантов обработки данных. Разработан алгоритм программного сопровождения по дальности, работающий при нелинейной гипотезе траектории движения судна.

Практическая значимость выполненного исследования заключается в следующем:

- а) Разработаны и зарегистрированы две программы ЭВМ, а также разработан и реализован в среде Matlab программный комплекс, позволяющие моделировать групповые сигналы и анализировать помехоустойчивость МОСС и АНС СУДС с учетом влияния нелинейностей тракта, многоантенных систем, гибридных методов ортогонального и неортогонального доступа.
- б) На основе предложенных решений создан аппаратно-программный комплекс, используемый в АО «ПКБ «РИО» и АО «НПП «АМЭ», принятый при реализации системы автономного судовождения и навигации в качестве вспомогательных алгоритмов при кооперативной обработке измерений.
- в) Предложены навигационные алгоритмы резервного программного сопровождения судна, используемые при пропадании измерений канала дальности, при постановке помех или при режимах повышения скрытности, которые позволяют за счет резервирования увеличить отказоустойчивость навигации, а также упростить реализацию навигационных задач путем использования только дальномерных измерений на основе сигналов связи.

Методы исследования. В проведенном исследовании использовался математический аппарат теории вероятностей, теории случайных процессов, методов множественного доступа и цифровой обработки сигналов. Для выполнения численных расчетов и контроля промежуточных результатов применялось программное Mathcad. Реализованные алгоритмы программы обеспечение И имитационного моделирования написаны на языках программирования Python и Matlab.

Положения, выносимые на защиту:

- 1. Полученные математические модели, включая стохастические дифференциальные уравнения (СДУ), плотности распределения и статистические закономерности для групповых видео- и радиосигналов с прямым расширением спектра, позволяющие в отличие от известных использующих гауссовскую аппроксимацию получить реальные оценки качества связи, а также снизить вычислительную сложность программных имитаторов групповых трактов.
- 2. Полученная аналитическая оценка помехоустойчивости к параметрам нелинейности видео- и радиотракта для системы радиодоступа с прямым расширением спектра в каналах с одной или множеством антенн, что уточняет требования на 0,3–2 дБ в зависимости от степени нелинейности.
- 3. Разработанный программный комплекс проведения имитационного эксперимента, учитывающий параметры нелинейности, с возможностью смен

модуляции, а также выигрыша от использования многоантенного способа приемо-передачи и неортогональных методов множественного доступа, позволяющего повысить качество автономного управления движением объектов.

Достоверность результатов. Достоверность обеспечивается корректностью применения математических алгоритмов и методов, подтверждается ЧТО согласованностью результатов, полученных путем аналитических расчетов и имитационно-статистического моделирования. соответствием также предшествующим полученных результатов исследованиям, обсуждением результатов на международных научных конференциях и их публикацией в рецензируемых научных журналах.

Апробация работы. Основные положения, выносимые на защиту, докладывались на:

- Конференции «Военная связь будущего. Квантовый скачок как неизбежность»: международная научно-практическая конференция, Санкт-Петербург, 2023 г.;
- 80-я Научно-техническая конференция Санкт-Петербургского «НТО РЭС им.
 А.С. Попова», Санкт-Петербург, 2025 г.;
- Научно-технические конференции «Актуальные проблемы инфотелекоммуникаций в науке и образовании»: СПбГУТ, Санкт-Петербург, 2021, 2022, 2023 и 2024 гг.

и других.

Публикации. Основные результаты исследования отражены в 24 опубликованных работах, 10 из которых – в изданиях из перечня ВАК Министерства образования и науки Российской Федерации; 2 работы – в изданиях, включенных в международные базы цитирования, а также в 2 программах для ЭВМ, 1 патенте, 1 отчете о НИР и 8 материалах конференций.

Реализация результатов исследования. Результаты работы внедрены и используются в НИОКР в АО «ПКБ «РИО» при разработке рекомендаций к проектируемым средствам связи и норм частотно территориального планирования; в АО «НПП «АМЭ» при разработке систем автономного судовождения, и были использованы в научно-исследовательской работе шифр «Телепорт 2030», проводимой СПбГУТ.

Соответствие паспорту специальности. Работа соответствует пунктам 2,8 и 13 паспорта специальности 2.2.13. Радиотехника, в том числе системы и устройства телевидения.

Личный вклад автора. Вклад автора заключается в выполнении основного объема исследований. Выносимые на защиту положения и результаты диссертационной работы получены автором самостоятельно. Доклады на конференциях сделаны автором лично.

Структура и объем диссертации. Диссертация состоит из введения, 4 глав, заключения и списка литературы. Общий объем диссертации составляет 230 страниц машинописного текста. Библиография содержит 172 наименования. Рисунки и таблицы нумеруются по главам.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении работы обоснована актуальность выбранной темы, сформулированы цели и задачи, новизна исследования и его теоретическая и практическая значимость. Описаны основные результаты, определены области их применения, приведены данные об апробации и публикации работы, а также представлены положения, выносимые на защиту.

В первой главе проведен анализ многоканальных ШПСС радиосвязи и проблем их использования в системах автономного судовождения (САС) и управления движением судов (СУДС), в частности, системах СУДС в порту (СУДС-П). Описан состав СУДС (рис. 1), включающий автономную навигационную систему (АНС) и морскую отказоустойчивую систему связи (МОСС), которые являются основными объектами исследования. Обоснована актуальность решаемых в диссертационной работе задач развития морских автономных и дистанционно управляемых надводных судов (МАНС), а также безэкипажных судов и портовой инфраструктуры, для оптимизации работы портов и повышения безопасности швартовных операций.

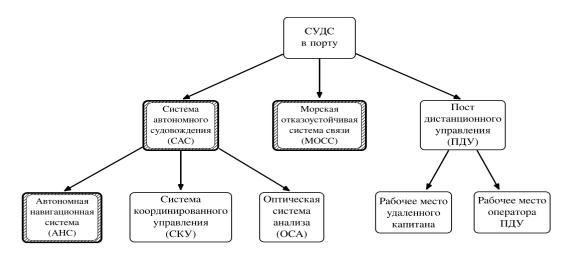


Рис. 1. Состав системы СУДС в порту для МАНС

Проанализированы характеристики различных технологий связи и навигации, применяемых в морских системах, включая ЦИВ, АИС, NAVDAT, АСОД, а также спутниковые системы (Инмарсат, Иридиум) и перспективные технологии ближнего радиуса действия. Рассматриваются методы ортогонального (МДЧР, МДВР, МДКР) и неортогонального множественного доступа (НОМД, от англ. Non-Orthogonal Multiple Access, NOMA) с использованием ШПС и технологий МДКР для повышения помехоустойчивости МОСС. Представлен анализ методов позиционирования для АНС, таких как триангуляция, разностно-дальномерные и многопозиционные комплексы, а также методы комплексирования данных от различных источников.

Сформулированы проблемы, решаемые в диссертационной работе и, в частности, проблема оценки влияния нелинейных искажений в радиочастотном тракте на производительность МДКР систем и необходимости разработки методов их снижения. Проведен анализ исследований сетей радиосвязи для СУДС. В большинстве работ вопросы, связанные с исследованием нелинейных искажений группового сигнала таких систем, либо не ставились, либо решались на упрощенных моделях.

Рассмотрены и обоснованы ключевые показатели эффективности для сетей радиосвязи и систем позиционирования. В качестве показателей эффективности для

сетей радиосвязи выбраны: спектральная эффективность, помехоустойчивость, энергетическая эффективность, сложность реализации и точность оценки параметров при моделировании системы. В качестве показателей эффективности для систем позиционирования рассмотрены: точность определения местоположения объекта, СКО ошибки измерения координат, геометрический фактор точности, нижняя граница Крамера-Рао и время проведения измерения.

Во второй главе приводится описание структуры многопозиционной АНС и многоканальной МОСС для СУДС (рис. 2), а также вопросы их математического моделирования, особенности модуляции, кодового разделения каналов и анализа характеристик передачи и приёма сигнала в системах ПРС-МДКР. Разрабатывается обобщенная модель сигналов систем связи и навигации для СУДС и отмечены факторы, влияющие на точность навигационных систем (АНС) и помехоустойчивость системы связи (МОСС) и систем СУДС в целом.

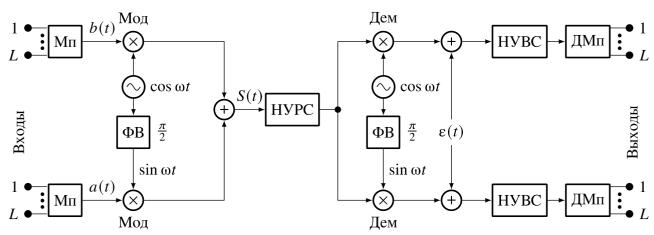


Рис. 2. Структурная схема многоканальной радиосети ПРС МДКР с КАМ: НУ – нелинейный усилитель; НУРС – НУ радиосигнала; НУВС – НУ видеосигнала; Мод – модулятор; Дем – демодулятор; ФВ – фазовращатель; Мп – мультиплексор; ДМп – демультиплексор.

Рассматриваются параметры помехоустойчивости (чиповая и битовая вероятности ошибки), влияние нелинейных искажений на МОСС. Рассмотрены методы кооперативной обработки измерений для повышения точности навигационных параметров АНС, а также принципы совместного использования радиоканалов и обеспечения их частотно-территориального разноса. Кроме того, анализируются возможности использования неортогонального множественного доступа НОМД совместно с МДКР и исследуются схемы построения квазиортогональных кодов для повышения спектральной эффективности и устойчивости к помехам. Для примера на рис. 3 представлены ВКФ рассматриваемых канальных переносчиков для базиса N=8.

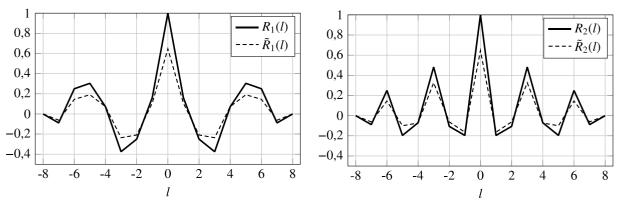


Рис. 3. Пример ВК Φ кодов w с 1-го и 2-го без учета НИ (- -) и с учетом НИ (—)

Сигналы с кодовым разделением каналов (рис. 3) имеют высокий пик-фактор. Сигналы, обладающие высоким пик-фактором, характеризуются значительными искажениями пиковых значений своей огибающей, так как максимальные уровни сигнала располагаются вблизи нелинейного участка амплитудной характеристики устройства.

Для распределения мощностей абонентов и назначения канальных переносчиков необходимо решение задач позиционирования. Время прохождения пилот-сигнала от пункта управления (ПУ) до объекта навигации: $T_i = \Delta t - T_c \cdot 64 \cdot PN_i$ где $T_c -$ длительность одного чипа, PN_i — смещение псевдослучайной последовательности i-го, Δt — измеренный интервал времени. Тогда дальность от i-го ПУ до объекта можно выразить, как $R_i = c \cdot T_i = \sqrt{(x_i - x)^2 + (y_i - y)^2}$, где c — скорость света, $\{x_i, y_i\}$ — координаты ПУ, R_i — дальность от объекта до ПУ; обозначив $\mathbf{D} = 2\begin{pmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_1 & y_3 - y_1 \end{pmatrix}$,

$$\mathbf{C} = \begin{pmatrix} R_1^2 - R_2^2 - x_1^2 + x_2^2 - y_1^2 + y_2^2 \\ R_1^2 - R_3^2 - x_1^2 + x_3^2 - y_1^2 + y_3^2 \end{pmatrix}$$
, текущие относительные пространственные

координаты объекта можно рассчитать: $\mathbf{Z} = \begin{pmatrix} x \\ y \end{pmatrix} = \left(\mathbf{D}^{\mathsf{T}}\mathbf{D}\right)^{-1}\mathbf{D}^{\mathsf{T}} \cdot \mathbf{C}$.

Предложен однопозиционный способ [12] определения параметров движения судна с использованием только пилот-сигналов и отраженных эхосигналов связи для систем автономного управления движением объектов на ограниченных расстояниях.

$$S_3 = \frac{\sqrt{2}(R_1^2 - 4R_2^2 + 3R_1^2)\sqrt{R_1^2 - 2R_2^2 + R_3^2}}{2(R_1^2 - 2R_2^2 + R_3^2)}.$$

От известных способов он отличается простотой технической реализации.

Проанализированы варианты кооперативной обработки дальномерных измерений в многопозиционной радиотехнической системе. Показано, что для метода наименьших квадратов

$$\mathcal{S} = \left[\left(A^T \Lambda W^{-1} A \right)^{-1} A^T \Lambda W^{-1} \right] \hat{H},$$

 $S^{6} = \|R_{1}^{6}R_{2}^{6}K R_{N}^{6}\|$ — матрица (вектор-строка) неизвестных оценок дальностей

размерностью $1 \times N$; $\hat{H}^T = \left\| \hat{R}_1 \hat{R}_2 \mathbf{K} \; \hat{R}_N \hat{R}_{\Sigma 12} \hat{R}_{\Sigma 21} \hat{R}_{\Sigma 13} \mathbf{K} \; \hat{R}_{\Sigma N} \right\|$ — матрица (вектор-строка) первичных измерений размерностью $1 \times N^2$; W — матрица точности первичных измерений размерностью , главная диагональ; A — матрица коэффициентов при неизвестных размерностью $N^2 \times N$, значения которых равны единице, если соответствующие неизвестные имеются в данном уравнении, и нулю — в противном случае. Показано, что привлечение дополнительной информации о сумме расстояний повышает точность оценивания дальностей S^C до судна относительно каждой из позиций. Так, например, для трехпозиционной системы дисперсии дальностей при кооперативной обработке примут вид $\sigma_{RK}^2 = diag \left(A^T W^{-1} A\right)^{-1}$, тогда, а найденная потенциальная точность равна

$$\sigma_{RK}^2 = \frac{1}{16\sigma_R^4 + 10\sigma_R^2\sigma_{R\Sigma}^2 + \sigma_{R\Sigma}^4} \times \begin{vmatrix} 6\sigma_R^4\sigma_{R\Sigma}^2 + \sigma_R^2\sigma_{R\Sigma}^4 & -2\sigma_R^4\sigma_{R\Sigma}^2 & -2\sigma_R^4\sigma_{R\Sigma}^2 \\ -2\sigma_R^4\sigma_{R\Sigma}^2 & 6\sigma_R^4\sigma_{R\Sigma}^2 + \sigma_R^2\sigma_{R\Sigma}^4 & -2\sigma_R^4\sigma_{R\Sigma}^2 \\ -2\sigma_R^4\sigma_{R\Sigma}^2 & -2\sigma_R^4\sigma_{R\Sigma}^2 & 6\sigma_R^4\sigma_{R\Sigma}^2 + \sigma_R^2\sigma_{R\Sigma}^4 \end{vmatrix} \sigma_R^2.$$

Найденное выражение позволяет оценить влияние точности первичных дальномерных измерений на формирование результирующих измерений дальности, а также рассчитать оценки точности измерений дальности при кооперативной обработке, позволяющей достичь высокой точности за счет измерений дальностей и избыточных измерений суммарных дальностей. Выполнен анализ вариантов обработки дальномерных измерений в зависимости от их точности в АНС в составе СУДС, реализующей кооперативную обработку информации.

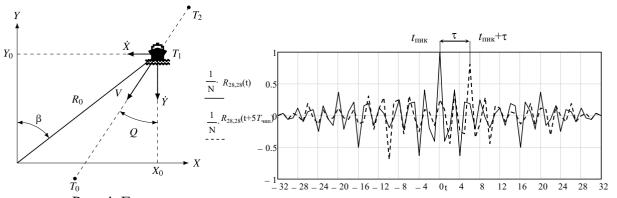


Рис. 4. Геометрия задачи программного сопровождения траектории судна

Условиями для перехода являются наличие измерений дальности до судна и проекций вектора скорости цели на оси декартовой системы координат. Показано, что при пропадании информации о дальности до судна, возможно реализовать резервный навигационный канал по данным программного сопровождения. Известные алгоритмы программного сопровождения для определения текущей дальности требуют измерения скорости следующую формулу для экстраполяции дальности: $R(t) = R_0 + \int_0^t R dt$ или при измерении ускорения $R(t) = R_0 + \int_0^t R dt / R dt$. Текущее значение дальности до объекта возможно определить по формулам

$$R = \frac{\cancel{R}\cos(\beta) - \cancel{Y}\sin(\beta)}{\cancel{R}} \quad \text{и } \cancel{R} = \cancel{X}\sin(\beta) + \cancel{Y}\cos(\beta), \text{ а } R(t) = R_o - \int_0^t (\cancel{X}\sin(\beta) + \cancel{Y}\cos(\beta))dt \quad (1)$$

где R_0 – скорость движения судна в момент начала программного сопровождения, X, Y – значения скоростей судна на момент переход в режим программного сопровождения, R – измеренное значение скорости измерения оцениваемого параметра, β – азимут судна.

На рис. 5 приведены СКО определения дальности как функции от нескольких случайных аргументов, полученные методом имитационно-статистического моделирования для способа (1) и для сравнения определения дальности при помощи экстраполяции. На малых временных интервалах (до 20 с) выигрыш в точности определения дальности предложенным способом незначителен, однако на больших интервалах он становится существенным. Предложенный способ критичен к гипотезе движения цели и точности формирования исходных данных для программного сопровождения. При срыве сопровождения по дальности радиолокационным каналом возможно косвенное её измерение при условии слежения за морским объектом наблюдения с помощью пассивной АНС.

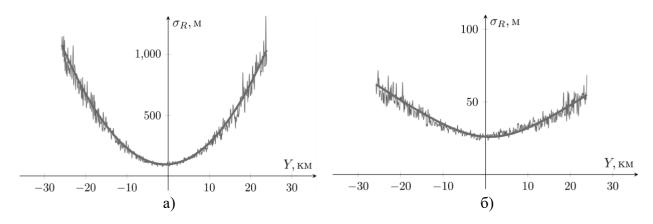
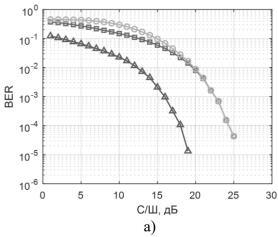



Рис. 5. Оценки СКО определения дальности до судна методом ИС красным – методом линеаризации функции СВ; синим – имитационно-статистическим моделированием: a – формула 1; δ – формула 2

Получена оценка потенциальной помехоустойчивости, учитывающая выигрыш от использования НОМД совместно с МДКР. Рассмотрены способы оптимизации коэффициентов распределения мощности для групп абонентов в целях обеспечения отказоустойчивости связи по правилу $J(\alpha) = \omega_1 \Delta BER + \omega_2 BER_1 + \omega_3 BER_2$ (где ω – подбираемый вектор весов), а оптимальный коэффициент находится численно из условия $\alpha_{\text{опт}} = \arg\min_{\alpha \in [0,5;1]} J(\alpha)$, т. е. для обеспечения равной помехоустойчивости двух абонентов. Результаты получены имитационно-статистическим моделированием и представлены на рис. 6.

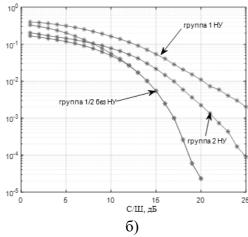
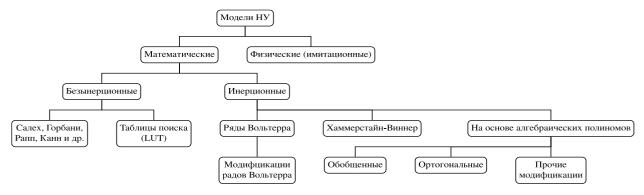


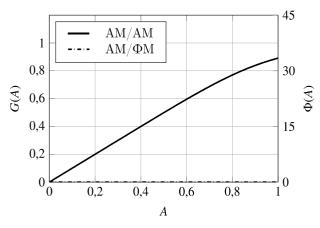
Рис. 6. Кривые помехоустойчивости для НОМД-МДКР при 2 и 3 группах разделения по мощности (неполная загрузка каждой НОМД-группы): a – для 3-х групп при отсутствии нелинейных искажений (НОМД-ПРС-МДКР); δ – для 2-х групп при наличии и отсутствии нелинейных искажений;

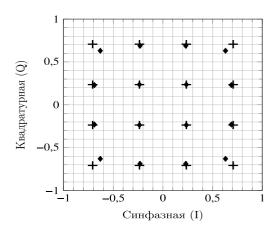
Показано, что при условии сохранения взаимной ортогональности кодов помехоустойчивость системы НОМД-МДКР на ($N \times K$ абонентов) равна помехоустойчивости системы НОМД из N абонентов, т. е. наибольшее влияние на помехоустойчивость системы оказывает именно разбиение пользователей на НОМД-группы. Желательно использовать все доступные канальные переносчики (весь доступный ортогональный ресурс), а уже при полной загрузке «кодовых каналов» применять неортогональное разделение по мощности (PD-NOMA).

В третьей главе приводится сравнение различных аналитических моделей, используемых для описания нелинейных характеристик групповых усилителей. Зачастую в работах других авторов пренебрегают учетом нелинейности, что приводит к существенным погрешностям в аналитических оценках помехоустойчивости сетей связи. Завышенные требования к линейности группового тракта приводят к увеличению цены изделия, заниженные требования — к ухудшению итогового качества связи. При этом цифровые методы линеаризации на основе численных методов, когда нелинейные искажения компенсируются путем внесения предварительных искажений в групповой сигнал, требуют высокоточной оценки амплитудных искажений групповых сигналов. Из изложенного следует, что оценка нелинейных искажений является важной научно-технической задачей.

Показано, что определяющими критериями для выбора способа аппроксимации AX (рис. 7) являются: во-первых, обеспечение точного соответствия между реальной AX ниже точки насыщения; во-вторых, наличие простой и надежной процедуры определения параметров аппроксимационной модели на основе реальных измеренных AX УМ; в-третьих, простота использования в последующих расчетах.




Рис. 7. Классификация моделей, применяемых для описания нелинейных усилителей


Показано, что выбор модели НУ (рис. 7) влияет на оценку уровня межканальных помех и вероятность битовой ошибки. При одинаковом уровне ограничения s, но различных моделях нелинейности, расчетные значения вероятности ошибки могут значительно различаться между собой. При отношении ОСШ=20 дБ для ограничителя $P_{\text{ош}}=10^{-5}$, для полинома третьей степени $P_{\text{ош}}=6\cdot10^{-2}$, а для модели Раппа $P_{\text{ош}}=10^{-3}$.

Приведена классификация моделей нелинейных устройств (рис. 7), описывающих реальные амплитудные характеристики НУ. На основе приведенной классификации сделан вывод и выбрана модель, наиболее адекватно описывающая характеристики усилителей в ШПСС — безынерционная аппроксимация АХ (Рапп) (рис. 8), задаваемая выражением

$$G(x) = \frac{kx}{\left(1 + \left(\frac{kx}{s}\right)^{2p}\right)^{\frac{1}{2p}}},\qquad \Phi(x) = 0$$
(2)

где s — порог ограничения, p — параметр модели, определяющий степень нелинейности АХ (p=1 сильная нелинейность, p=10 близко к АХ типа «жесткий ограничитель»), k — эквивалентный коэффициент усиления.

а) Амплитудные (AM/AM) и амплитуднофазовые (AM/ФM) характеристики

б) Векторные диаграммы для КАМ-16 «+» –вх. НУ; «◆»–вых. НУ

Рис. 8. Характеристики модели нелинейности Рапп p=1; s=1; k=1

Однако авторы модели (2) не приводят способа подбора параметров модели, а в работе был предложен свой метод подбора этих параметров.

Найденные значения «неуравновешенных слагаемых», полученные для базиса ортогональности N=8, показаны в таблице 1 (аналогично можно получить и для больших базисов). Приведенные комбинации получены методом направленного поиска.

Таблица. 1. Комбинационные составляющие при N=8

Вариант	Комбинации полезного сигнала и помех	Количество
	на выходе канального перемножителя при $k = \text{const}$	комбинаций
1	$B_1(k) = \gamma_{4,k} g_{4,k} + \gamma_{7,k} g_{7,k}$	56
	$\eta_1(k) = 3\xi_{3,k} + 4\xi_{4,k} + \xi_{7,k}$	
2	$B_2(k) = \gamma_{5,k} g_{5,k} + \gamma_{6,k} g_{6,k}$	336
	$\eta_2(k) = \xi_{2,k} + 2\xi_{3,k} + 2\xi_{4,k} + 2\xi_{5,k} + \xi_{6,k}$	
3	$B_3(k) = \gamma_{1,k} g_{1,k} + 4\gamma_{4,k} g_{4,k} + 3\gamma_{5,k} g_{5,k}$	56
	$\eta_3(k) = \xi_{1,k} + 4\xi_{4,k} + 3\xi_{5,k}$	
	Итого	448

Отмечены новые, не отмеченные ранее в литературе, комбинационные свойства групповых сигналов (табл. 1). Вероятности появления комбинаторных вариантов сигналов равны: Π_1 =56/448=0,125; Π_2 =336/448=0,750; Π_3 =56/448=0,125. С учетом этих свойств выполнен и уточнен расчет помехоустойчивости. Найденные комбинации позволяют сократить количество анализируемых реализаций группового сигнала при наличии нелинейных искажений. То есть не обязательно рассматривать все реализации – достаточно только те, которые имеют одинаковые «неуравновешенные» слагаемые (именно они и были найдены в табл. 1), количество таких комбинаций меньше общего количества реализаций группового сигнала.

Полученные в работе зависимости представляют практическую ценность при разработке цифровых методов линеаризации, основанных на внесении предварительных искажений и требующих высокоточной оценки амплитудных искажений группового сигнала.

Для выбранной модели аппроксимации нелинейной АХ (модель Раппа) предложены аналитические выражения оценки ее параметров на основе измерений АХ. Эти выражения получены с помощью алгоритма Ньютона-Гаусса для трёхпараметрической модели НУ типа Раппа (2). Алгоритм показан на рис. 9, а предлагаемые выражения имеют вид:

$$2\sum_{i=1}^{m} \left[G(x_i / k, p, s) \frac{\partial G(x_i / k, p, s)}{\partial k} - y_i \right] = 0,$$

$$2\sum_{i=1}^{m} \left[G(x_i / k, p, s) \frac{\partial G(x_i / k, p, s)}{\partial p} - y_i \right] = 0,$$

$$2\sum_{i=1}^{m} \left[G(x_i / k, p, s) \frac{\partial G(x_i / k, p, s)}{\partial s} - y_i \right] = 0.$$

$$\frac{\partial G(x_i / k, p, s)}{\partial k} = \frac{x_i}{[1 + z^{2p}]^{\frac{2p+1}{2p}}},$$

$$\frac{\partial G(x_i / k, p, s)}{\partial p} = kx_i \frac{(1 + z^{2p}) \ln[1 + z^{2p}] - z^{2p} \ln z^{2p}}{2p^2 [1 + z^{2p}]^{\frac{2p+1}{2p}}}$$

$$\frac{\partial G(x_i / k, p, s)}{\partial s} = \frac{z^{2p+1}}{[1 + z^{2p}]^{\frac{2p+1}{2p}}}.$$

$$\nabla \mathbf{F} = \begin{bmatrix} \frac{\partial G(x_i / k, p, s)}{\partial k} \\ \frac{\partial G(x_i / k, p, s)}{\partial k} \\ \frac{\partial G(x_i / k, p, s)}{\partial k} \end{bmatrix}, \mathbf{Y} = \begin{bmatrix} y_i - G(x_i / k, p, s) \\ y_i - G(x_i / k, p, s) \\ y_i - G(x_i / k, p, s) \end{bmatrix}, \mathbf{d} = \begin{bmatrix} k_0 \\ p_0 \\ s_0 \end{bmatrix}.$$

Рис. 9. Блок-схема алгоритма определения параметров модели

С учетом правил функционального преобразования случайных процессов получены аналитические выражения плотности распределения вероятности (ПРВ) амплитуды чипа группового сигнала на выходе НУ

$$W_{y}(y) = \sum_{i} \frac{\delta(u - u_{i}) C_{L}^{\frac{L+u}{2}} q^{\frac{L+u}{2}} (1 - q)^{\frac{L-u}{2}}}{\sqrt[2p]{z(y)} z(y) \sqrt{2\pi}\sigma} \times \exp\left\{\frac{-1}{2\sigma^{2}} \left[\frac{y}{\sqrt[2p]{z(y)}} - u\right]^{2}\right\},$$
 (3)

и соответствующей функции распределения (ФРВ)

$$F(y) = \sum_{i} \frac{\delta(u - u_{i}) C_{L}^{\frac{L+u}{2}} q^{\frac{L+u}{2}} (1 - q)^{\frac{L-u}{2}}}{\sqrt{2\pi}\sigma} \times \int_{-\infty}^{\infty} \exp\left\{-\frac{(t - u)^{2}}{2\sigma^{2}}\right\} dt, \qquad (4)$$

где L — количество канальных переносчиков, u и u_i =-L,-L+2,...,L — мгновенная амплитуда чипа и возможные дискретные значения амплитуды чипа группового сигнала соответственно, q — вероятность появления информационного символа $\mathbf{1}$ (предполагается одинаковой в каждом из L каналов), δ — дельта функция, σ^2 — дисперсия амплитуд чипов группового сигнала, для сокращения записи введена вспомогательная функция $z(y) = 1 - (y/s)^{2p}$, p и s — параметры АХ НУ из (2). Расчёты выполнены путём функционального преобразования исходной плотности распределения на входе НУ. Построенные по (3) и (4) графики группового сигнала из 16-мерного базиса Уолша на выходе нелинейного усилителя с $\Delta M/\Delta M$ характеристикой (2) представлены на рис. 10. Поскольку функции $1/2\sqrt[p]{z(y)}$ и 1/z(y)

терпят разрывы в $y=\pm s$, расчет ограничен интервалом $-s+\epsilon \le y \le s-\epsilon$, где $\epsilon-$ достаточно малая величина, не влияющая на точность инженерных расчетов. Сделан вывод о негауссовости распределения (с ростом количества каналов также), а следовательно, и возникающие помехи множественного доступа будут иметь негауссовское распределение.

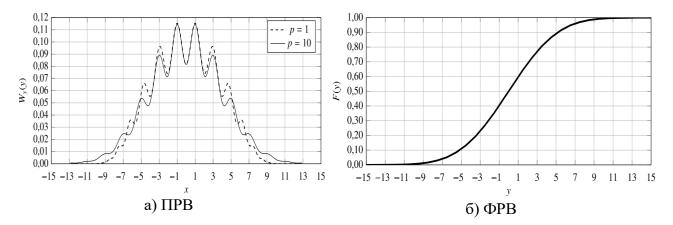
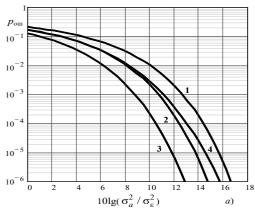


Рис. 10. Пример смесь сигнала с шумом на выходе НУ


Также получено разложение функции (3) и (4) в ряд Грама-Шарлье вида

$$W(x) = \frac{\exp\left(\frac{-x^2}{2\sigma_x}\right)}{\sigma_x\sqrt{2\pi}} \left[1 + \frac{\mu_3\{x\}}{3!}(x^3 - 3x) + \frac{\mu_4\{x\} - 3}{4!}(x^4 - 6x^2 + 3)\right],$$

что позволяет облегчить синтез СДУ группового сигнала на выходе НУ.

На рис. 11а представлены графики зависимости вероятности битовой ошибки $p_{\text{ош}}$ от ОСШ для ПРС-МДКР с КАМ-64 при следующих условиях: с учетом НИ в НУ без учета влияния комбинаторных свойств группового сигнала (кривая 1); с учетом НИ и комбинаторных свойств группового сигнала Уолша, при замене ПРВ помех (5) гауссовым распределением (кривая 2) (расчетная помехоустойчивость завышается по сравнению с реальной); с учетом НИ и комбинаторных свойств группового сигнала, с аппроксимацией (3) распределения помехи при помощи модифицированных полиномов Эрмита и ряда Грама-Шарлье (кривая 3).

На рис. 11б показано сравнение требований к линейности тракта, полученных в данной работе, с результатами других авторов. Представлен также известный график вероятности ошибки в системе с КАМ-64 без МДКР, с раздельной регистрацией каждого чипа (кривая 4). При равновероятности и независимости всех чипов скорость передачи информации в каждом стволе такой системы составляет 3 бита/чип. Кривая 4 завышает реальную помехоустойчивость системы и, в частности, не учитывает, что ошибка при регистрации одного чипа приводит к искажению от 1 до 3 битов входящего цифрового потока.

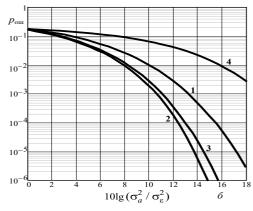


Рис. 11. Кривые помехоустойчивости в канальном селекторе для МДКР с КАМ: a — условные вероятности ошибки $p_{\text{ош1},...,}p_{\text{ош4}}$; σ — сравнение $p_{\text{ош}}$ при разных методиках оценки

Приведены примеры расчетов помехоустойчивости в зависимости от параметров нелинейности группового тракта. Полученные результаты позволяют повысить энергетическую эффективность систем абонентского доступа путем выбора амплитудных характеристик группового усилителя, обеспечивающих максимальную энергетическую эффективность при заданной помехоустойчивости. Полученные в работе зависимости могут быть полезны при разработке таких методов линеаризации тракта. В целом по результатам расчетов в главе 3 проведен расчет, обеспечивающий уточнение показателей помехоустойчивости группового тракта на 0,3-2 дБ.

В **четвертой главе** представлены результаты практической реализации предложенных моделей в среде Matlab. На основе разработанных математических моделей группового сигнала проанализирована помехоустойчивость многоантенной системы с различными конфигурациями приемо-передающих антенн с учетом искажений, возникающих в радиотракте. Анализ выполнен путем имитационно статистического моделирования.

$$\mathbf{W} = \begin{vmatrix} w_{1,1} & \cdots & w_{1,L} \\ \vdots & w_{k,i} & \vdots \\ w_{N,1} & \cdots & w_{N,L} \end{vmatrix}, \mathbf{D} = \begin{vmatrix} d_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & d_2 & 0 & \ddots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & d_L \end{vmatrix}, \mathbf{D}_c = \begin{vmatrix} d_1 \\ d_2 \\ \vdots \\ d_L \end{vmatrix}$$

$$\tilde{\mathbf{D}}_c = \operatorname{sign}(\mathbf{R}) = \operatorname{sign}(\mathbf{A}\mathbf{S}^T) = \operatorname{sign}\left\{ \left[\mathbf{A} \left(\mathbf{D}_c^T \mathbf{A} \right) \right] \right\}.$$
(5)

Найдены аналитические выражения для дисперсии амплитуды искажений на выходе двустороннего ограничителя и условные ПРВ на выходе НУ согласно схеме, представленной на рис. 12.

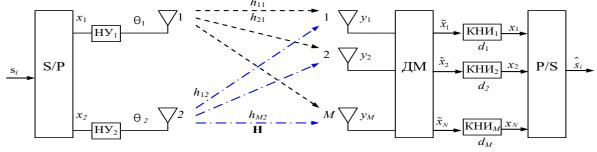


Рис. 12. Обобщенная структурная схема беспроводной системы связи, использующей принцип пространственного мультиплексирования и схему компенсации искажений на приемной стороне; КНИ₁...КНИ_М – компенсаторы искажений от 1 до *М*

Для снижения межканальных помех, вызванных влиянием НУ, на приемной стороне вводится дополнительный блок компенсации нелинейных искажений (КНИ) на выходе ДМ, где χ_0 — первичная оценка передаваемого символа на выходе ДМ (пространственно-временной декодер или демодулятор системы с ПВК), \hat{x}_N — скорректированная оценка с учетом компенсации искажений. В блоке КНИ отдельно для каждой антенны производится оценка величины искажений $\mathbf{d} = \begin{bmatrix} d_1 & d_i & \dots & d_N \end{bmatrix}^T$ = d_i в виде $\hat{d}_j = G_{\text{Hy}}\left(\chi_0\right) - K_{\text{Hy}}\chi_0$, где K_{Hy} — некоторая постоянная величина, зависящая от вида амплитудной характеристики НУ — A_{Hy} , затем полученная оценка величины искажений вычитается из начальной оценки переданного сигнала x_1 и x_2 и затем находится решение по всем x_i так что

$$\hat{x}_1 = \operatorname*{arg\,min}_{i \in 0 \dots N} \left\{ \left\| x_i - \left(\tilde{x}_1 - \hat{d}_1 \right) \right\| \right\}, \qquad \quad \hat{x}_2 = \operatorname*{arg\,min}_{i \in 0 \dots N} \left\{ \left\| x_i - \left(\tilde{x}_2 - \hat{d}_2 \right) \right\| \right\}.$$

Таким образом, решение принимается детектором максимального правдоподобия на основе минимума евклидова расстояния между χ_0 , χ_2 и всеми возможными передаваемыми сигналами $x_i...x_N$ или, обобщая последнее выражение в матричной форме, можно записать:

$$\hat{x}_{j} = \frac{1}{K_{\text{HV}}} \cdot \left[\mathbf{H}^{(j)} \left\{ \left[\mathbf{H}^{\text{H}} \mathbf{H} \right]^{-1} \right\} \right]^{\text{H}} \cdot \mathbf{y} - K_{\text{HV}} \cdot \mathbf{d} ,$$

где $\mathbf{H}^{(j)} - j$ -й столбец матрицы $\mathbf{H}, \ \mathbf{H}^{\mathrm{H}} -$ эрмитово-сопряжённая матрица.

С помощью разработанной компьютерной модели можно определить долю выходной мощности, приходящуюся на полезный сигнал, а также ухудшение ОСШ, вызванное нелинейными искажениями в многоантенных радиосистемах. Таким образом, можно оценить границы допустимых уровней нелинейных искажений для расчета реальной помехоустойчивости и задания технических требований к групповым трактам радиотехнических систем с ПВК.

На основе выполненного в главе 3 исследования статистических свойств (рис. 3 и табл. 1) группового сигнала предложена методика расчета статистических характеристик группового сигнала методом направленного поиска оптимального решения, получены переходные матрицы, описывающие состояние группового сигнала. Используя корреляционный подход, показано, что для случая полной загрузки каналов для базисов 4, 8 и 16 переходные матрицы имеют вид:

Откуда определяется матрица переходных вероятностей, как $\mathbf{T}_N = \mathbf{Q}_N / (\mathbf{Q}_N \cdot \mathbf{J}_N)$ где \mathbf{J}_N — матрица единиц. Сгенерировать групповой сигнал можно с использованием марковского процесса при помощи рекурсивного итерационного алгоритма вида:

$$x_{m} = F(x_{m-1}, \xi_{m}), \quad m = 0, \pm 1, \pm 2, K,$$

$$F(k, \xi) = \begin{cases} u_{1}, & 0 < \xi \leq T_{k,1}; \\ u_{2}, & T_{k,1} < \xi \leq T_{k,1} + T_{k,2}; \\ u_{3}, & T_{k,1} + T_{k,2} < \xi \leq T_{k,1} + T_{k,2} + T_{k,3}; \\ M & M \\ u_{N}, & 1 - T_{k,N} < \xi \leq 1, \end{cases}$$

В общем случае, чтобы сгенерировать диффузионный марковский процесс с заданной стационарной ПРВ p(x,t) на основе СДУ в форме Ито, необходимо найти коэффициенты f(x) и g(x) в уравнении $\mathscr{E}=f(x)+g(x)\xi(t)$, которое подчиняется уравнению ФПК вида

$$-\frac{\partial}{\partial t}p(x,t) = \frac{\partial}{\partial x}[K_1(x)p(x,t)] - \frac{1}{2}\frac{\partial^2}{\partial x^2}[K_2(x)p(x,t)],$$

где коэффициент сноса $K_1(x) = f(x)$ и коэффициент диффузии $K_2(x) = g_2(x)$, а численная симуляция такого процесса определяемого СДУ может быть выполнена непосредственно из

$$\mathcal{E} = -\alpha \left(x - m_x\right) + \left(-\frac{2\alpha}{p_s(x)} \int_{-\infty}^x (x - m_x) p_s(x) dx \xi(t)\right)^{1/2}.$$

Полученные с использованием синтезированных СДУ результаты (на рис. 13а — пример синтезированного группового сигнала, рис. 13б — гистограмма одномерной плотности распределения амплитуд, рис. 13в — корреляционная функция)

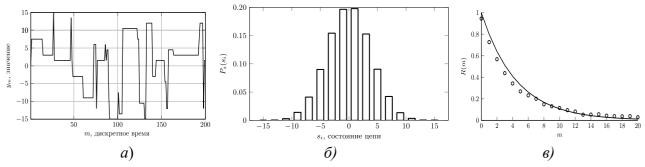


Рис. 13. Дискретная модель группового сигнала ПРС-МДКР: a-выборка; $\delta-$ РВ; $\epsilon-$ КФ

позволяют повысить энергетическую эффективность систем абонентского доступа путем выбора амплитудных характеристик группового усилителя, обеспечивающих максимальную энергетическую эффективность при заданной помехоустойчивости.

Из рис. 13 видно, что представленные модели групповых сигналов сетей связи для СУДС с ПРС-МДКР хорошо аппроксимируются при помощи математической модели на основе СДУ и марковского процесса, что позволяет использовать данный метод аппроксимации при моделировании групповых трактов ПРС-МДКР для СУДС.

Оценка соответствия теоретической плотности вероятности амплитуд группового сигнала и моделируемой ПРВ на основе СДУ была выполнена по критерию согласия Колмогорова-Смирнова. Полученные результаты показывают, что описанные СДУ адекватно аппроксимируют распределение группового сигнала ПРС-МДКР для СУДС с уровнем значимости α =0,1.

ЗАКЛЮЧЕНИЕ

Основные результаты, полученные в исследовании:

- 1. Проанализированы методы и навигационные алгоритмы систем АНС, а также технологии помехоустойчивой радиосвязи МОСС для СУДС. Выбран и обоснован набор ключевых показателей качеств систем связи. Ключевые показатели для МОСС: спектральная и энергетическая эффективность, помехоустойчивость, сложность реализации, точность оценки параметров; для АНС: точность определения координат (СКО), геометрический фактор, граница Рао-Крамера, время измерений.
- 2. Обоснована перспективность интеграции систем на основе ПРС-МДКР с новыми технологиями, такими как многоканальные многочастотные системы (МЧМ-МДКР; от англ. Multi Carrier CDMA, МС-СDMA), НОМД и многоантенные системы (МІМО).
- 3. Исследовано влияние точности первичных дальномерных измерений на итоговую оценку дальности; приведены результаты моделирования многопозиционной радиотехнической навигационной системы с применением ШПС. Показано, что кооперативная обработка не нарушается даже при увеличении дисперсий ошибок измерения дальностей и сумм расстояний до предельных значений, и обеспечивает СКО на уровне $0,509\sigma_R$ от точности первичных измерений дальности при накоплении 9 измерений и кооперативной обработке с 3 позиций.
- 4. Предложены обработке новые подходы кооперативной многопозиционных дальномерных измерениях положения на основе только измерений, использующих сигналы связи, и к траекторному сопровождению объекта Разработан повышения точности. алгоритм программного сопровождения, обеспечивающий длительное сопровождение объекта с определением

прямоугольных координат, что может быть использовано как для адаптивной регулировки мощности, так и, например, для повышения надежности швартовки в качестве резервного навигационного канала. При этом на малых временных интервалах (20-30 сек.) точность повышена в 2-6 раз по сравнению с известными алгоритмами.

- 5. Найдены новые, ранее не отмеченные в литературе статистические закономерности в групповых и канальных сигналах с кодовым разделением каналов. Показаны корреляционные характеристики групповых сигналов с кодовым разделением каналов (МДКР) при различных значениях базиса ортогональности (т. е. при разном количестве абонентов), позволяющие реализовать итерационный многопользовательский прием абонентских сигналов.
- 6. На основе системного анализа проведена классификация моделей нелинейности амплитудных характеристик усилителей.
- 7. Разработан метод определения параметров модели амплитудной характеристики усилителя мощности после функционального преобразования, позволяющий учитывать фазовую структуру интермодуляционных продуктов. Использование данного метода позволяет точно оценивать параметры модели и более точно рассчитывать требования к системам и уровень интермодуляционных продуктов на выходе НУ, обеспечивая повышение точности оценки ОСШ на 3%.
- 8. Проведен анализ нелинейных искажений группового видео- и радиосигнала и их влияния на помехоустойчивость сети связи. Представленные аналитические выражения и графики могут быть использованы для решения вопросов компенсации нелинейных искажений и исследования межканальных влияний в системах связи и многопозиционного позиционирования при использовании ШПС, что позволяет проектировать приемопередатчики систем навигации и связи с МДКР.
- 9. Разработана компьютерная модель для исследования реальной помехоустойчивости группового тракта системы с МДКР с учетом нелинейности амплитудной характеристики видеотракта и аддитивного белого гауссовского шума, а также с возможностью учета фазовой нелинейности.
- 10. Синтезированы новые стохастические дифференциальные уравнения (СДУ) и предложен метод расчета переходных матриц для марковской модели группового ШПС. Сформулирован подход к моделированию сигнала на выходе нелинейного усилителя с использованием стохастических дифференциальных уравнений. Описан не используемый ранее способ аппроксимации закона распределения сигнала при помощи разложения в ряд Грама—Шарлье.
- 11. Разработан рекурсивный алгоритм для генерации группового сигнала на интервале одного периода ортогональности. Показано хорошее согласование результатов моделирования с реальными характеристиками группового сигнала. Полученные СДУ дают ошибку теста Колмогорова-Смирнова в пределах 0,8.

В работе проанализированы существующие системы и технологии автономного судовождения, проведено математическое моделирование и анализ влияния нелинейностей на ШПСС и МДКР. Разработан программный комплекс для экспериментальной проверки полученных теоретических результатов. Основной результат исследования — это усовершенствованные модели сетей радиосвязи, алгоритмы навигации и методики анализа сетей радиосвязи, учитывающие особенности нелинейных искажений в многоканальных ШПСС и системах автономной навигации, применяемых в управлении движением судов, а также их практическая реализация в разработанном программном обеспечении.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

Публикации в рецензируемых научных изданиях, рекомендованных ВАК

- 1. Глушанков Е. И. Анализ помехоустойчивости МІМО-систем с учетом нелинейных искажений в радиотракте / Е. И. Глушанков, С. Г. Егоров // Радиотехника. -2025. Т. 89, № 7. С. 156-163.
- 2. Егоров С.Г. Анализ эффективности применения неортогонального разделения каналов (NOMA) в широкополосных сетях радиосвязи. Моделирование, оптимизация и информационные технологии. 2025;13(3). URL: https://moitvivt.ru/ru/journal/pdf?id=2002.
- 3. Глушанков Е. И. Моделирование сигналов сетей связи с кодами Уолша в виде стохастических дифференциальных уравнений / Е. И. Глушанков, В. Я. Конторович, С. Г. Егоров // Электросвязь. 2024. № 11. С. 49-56.
- 4. Гуревич В. Э. Моделирование амплитудной характеристики радиотракта с кодовым разделением каналов / В. Э. Гуревич, С. Г. Егоров // Труды учебных заведений связи. -2020.-T.6, № 2.-C.30-38.
- 5. Борисов Е. Г. Инерционное сопровождение траектории воздушного судна радиолокационно-оптической системой слежения / Е. Г. Борисов, С. Г. Егоров // Вопросы радиоэлектроники. -2018.- N
 dot 1.- C. 6-11.
- 6. Борисов Е. Г. Анализ точности определения местоположения источников радиоизлучения пассивной двухпозиционной радиотехнической системой / Е. Г. Борисов, С. Г. Егоров, И. С. Мартемьянов, С. В. Мичурин, Е. Г. Семенова // Вопросы радиоэлектроники. 2016. № 9. С. 11-16.
- 7. Гуревич В. Э. Исследование нелинейных искажений радиосигнала в системе CDMA с квадратурно-амплитудной модуляцией / В. Э. Гуревич, С. Г. Егоров // Информационно-управляющие системы. 2015. № 5 (78). С. 106-115.
- 8. Гуревич В. Э. Нелинейные искажения группового сигнала в радиосистеме абонентского доступа / В. Э. Гуревич, С. Г. Егоров // Инфокоммуникационные технологии. -2012. -T. 10, № 3. -C. 77-82.
- 9. Егоров С.Г. Анализ реальной помехоустойчивости группового тракта радиосистемы абонентского доступа // Инфокоммуникационные технологии. 2012. Т. 10, № 4. С. 59-62.
- 10. Гуревич В. Э. Электромагнитная совместимость радиорелейных линий и цифровых радиосистем абонентского доступа / В. Э. Гуревич, С. Г. Егоров // Труды учебных заведений связи. -2011. -№ 184 185. -С. 122-128.

Свидетельства о результатах интеллектуальной деятельности

- 11. Свидетельство о государственной регистрации программы для ЭВМ № 2025667355. Имитационная модель исследования влияния нелинейных искажений, замираний и неортогонального разделения пользователей в системе DS-CDMA / С.Г. Егоров № 2025666508; заявл. 04.07.2025; опубл. 04.07.2025. (Рос. Федерация).
- 12. Патент RU 2759199 C1. Способ измерения параметров движения объекта активным локатором / Е. Г. Борисов, С. Г. Егоров, О. С. Голод. № 2020122456; заявл. 30.06.2020; опубл. 10.11.2021. (Рос. Федерация).
- 13. Свидетельство о государственной регистрации программы для ЭВМ № 2013611031. Модель группового тракта системы передачи информации с квадратурной

амплитудной модуляцией и прямым расширением спектра / В. Э. Гуревич, С. Г. Егоров. – № 2012661085; заявл. 12.12.2012; опубл. 09.01.2013. – (Рос. Федерация).

Публикации в изданиях, входящих в международные базы цитирования

- 14. Borisov E.G. Cooperative processing of measurements in pseudorange radiotechnical finding system / E.G. Borisov, S.G. Egorov, G.M. Mashkov // Indian Journal of Science and Technology. −2016. − Vol. 9, № 46. − P. 107561.
- 15. Borisov E. G. Analysis of options of cooperative processing of measurements in long-range multistatic radar system / E. G. Borisov, S. G. Egorov // Indian Journal of Science and Technology. 2016. Vol. 9, No. 42. P. 104215.

Публикации в других изданиях и сборниках научных трудов и конференций

- 16. Егоров С. Г. Моделирование цифровой информационно-измерительной системы с неортогональным разделением каналов для анализа помехоустойчивости систем навигации движущегося объекта // 80-я Научно-техническая конференция Санкт-Петербургского НТО РЭС им. А.С. Попова, посвященная Дню радио: сб. докладов [Электронный ресурс] / СПбГЭТУ «ЛЭТИ». Санкт-Петербург, 2025. С. 104-106. URL: https://conf-ntores.etu.ru/2025/ru/sbornik-dokladov/
- 17. Глушанков Е. И. Синтез стохастических дифференциальных уравнений для моделирования сигналов сетей связи на основе кодов Уолша / Е. И. Глушанков, С. Г. Егоров // Актуальные проблемы инфотелекоммуникаций в науке и образовании (АПИНО 2024): материалы XIII Междунар. науч.-техн. и науч.-метод. конф.: в 4 т. Санкт-Петербург, 2024. С. 141-144.
- 18. Глушанков Е. И. Анализ статистических характеристик группового сигнала в сетях радиодоступа с кодовым разделением каналов / Е. И. Глушанков, С. Г. Егоров // Военная связь будущего. Квантовый скачок как неизбежность: сб. материалов междунар. науч.практ. конф. Санкт-Петербург, 2023. С. 14-21.
- 19. Гуревич В. Э. Моделирование фазоамплитудной характеристики радиотракта с кодовым разделением каналов / В. Э. Гуревич, С. Г. Егоров // Актуальные проблемы инфотелекоммуникаций в науке и образовании: сб. науч. ст.: в 4 т. Санкт-Петербург, 2021. С. 124-128.
- 20. Гуревич В. Э. К вопросу о реальной помехоустойчивости радиосистемы CDMA / В. Э. Гуревич, С. Г. Егоров // Актуальные проблемы инфотелекоммуникаций в науке и образовании: сб. науч. ст.: в 4 т. Санкт-Петербург, 2020. С. 131-136.
- 21. Гуревич В. Э. Выбор порога ограничения в усилителе мощности сигналов с КАМ / В. Э. Гуревич, С. Г. Егоров // Актуальные проблемы инфотелекоммуникаций в науке и образовании (АПИНО 2018) : сб. науч. ст.: в 4 т. / под ред. С. В. Бачевского ; сост.: А. Г. Владыко, Е. А. Аникевич. 2018. С. 126-131.
- 22. Борисов Е. Г. Моделирование процесса измерения координат пассивной информационной системой / Е. Г. Борисов, О. С. Голод, С. Г. Егоров // Актуальные проблемы инфотелекоммуникаций в науке и образовании (АПИНО 2018) : сб. науч. ст. : в 4 т. / под ред. С. В. Бачевского ; сост.: А. Г. Владыко, Е. А. Аникевич. 2018. С. 49-54.
- 23. Гуревич В. Э. Влияние нелинейных искажений широкополосных сигналов на точность системы позиционирования / В. Э. Гуревич, С. Г. Егоров // Актуальные проблемы инфотелекоммуникаций в науке и образовании: сб. науч. ст.: в 4 т. 2017. С. 159-163.

Отчеты о НИР

24. Шестаков А.В., Громова Н.Н., Кучерявый А.Е., Егоров С.Г. и др. Прикладные научные исследования в области создания сетей связи 2030, включая услуги телеприсутствия с сетевой поддержкой, и экспериментальная проверка решений при подготовке отраслевых кадров. Вторая очередь. Шифр «Телепорт-2030». Отчет о НИР. 2022. – 660 с. Номер государственной регистрации: 122020100465-3